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On the Diffusion of a sc4ute in Substitutional alloys.-
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S..';:rY A calculation is submitted of the diffusion coefficient of a-ors
:'ic, have penetrated into the Internodes of body-centred cubic crysta1-ne
>&ttice of a binary alloy which may be in an ordered state.

shall cct onsL LAV

e shall corsider the binary alloy of metals of the A and 3 substitutional
type. Ass,-.,e that the alloy has a body-centred cubic lattic and may be found

in an ordered state. Assuze that the atoms of any third element C have
penetrated into the internodes of the crystalline lattice of the alloy A-B.

00 It 's assumed that the atoms C have a sufficiently small radius for it to be
possible to neglect deviations of the lattice of the alloy A-B in the case
of i-ts penetration. The constant of the lattice a0 and the energy of the

interaction of different pairs of atom.s -uill be considered to be independent
of the composition of the alloy, of the concentration of the penetrating
atoms, and of the degree of ordered arrangement.

The aLm visualised is to determine the diffusion coeffl" ent of the atoms
C which have penetrated, a5Fsuming the presence in the alloy of a gradient of
concentration of these atoms. It is well-knmvn that current experimental
methods make it possible to measure the diffusion coefficient at such
temperatures that many alloys are in an ordered state. This affords the
possibility -In principle of studying by experiment the influence of ordered
arrangement on diffusion, and enables the presentation of the calculation
submitted below.

Section i. Determination of the mean height of potential barriers for the
transition of penetrated atoms from one internode into an adjacent
one.

It is well-knovrn (I) that atoms C which have penetrac,-d into internodes
may assu:,ie positions of stable equilibrium corresponding tc centres of the
boundaries and to the mean of the edges of elementary cubic cells.

We shall call nodes of the crystalline lat:ice of an ordered alloy A-B
determinative for atoms A, nodes of the first type, and nodes determinative
for atom B, nodes of the second type. Assume for exarrole that nodes of the
first type are situated at t'e summ.its of cubic lattices and that nodes of
the second type are at tneir centres. Then, among the internodes mentioned,
there will be found internodes of the first type 01 (centres of boundaries),

having four adjacent nodes of the first type, at a distance a_ and two

adjacent nodes of the second type at a distance (footnote i) a0 and

internodes of the se';ond type 02 (centres of the edges), having four

neighbouring nodes of the second type at an interval a0 and two neighbouring

nodes of the first type at an interval of a . Consider now the positions
2

P of the penetrated atom C corresponding to the summit of th- potential
barrier for its transition from one internode into the neares, neighbouring
internode, that is. from the cvntre of the boundary to h3 centre of the
eCge, or from the centre of the edge to the centre of the boundary. (""'U
shall consider only these more probable transitions). I will be assumed
that this position P is situated along the milddle of the section joining
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the said neignbor _ng internodes (footnote 2). Then, all psiionz P -ill

have four nearest neigabouring nodus at a uniforln interval -P, a among

which there %-.ill ai,.'ays be two nodes of the first type and t*wo odes of the J
second type. The nodes follo-ing in distance vwill be found to be a
considerably greater distance J13 a from the distance P and hose -il be11

neglected in the ca-culation of the notential e.:ergy of the- atm C in t...
position P. Vie shall denote the energy of interacticn of the raors of CA ari
CB by vCA and vCB, putting

vCA V 2 VC,

ao - CB = -

We shall use the a- proximate method of calculation frequently applied in the
theory of a solid body, which may be described as the method of mean
energies. Th- essence of this method is that we shall not merely consider
the difference of configuration of neighbouring atoms surrounding any atom
of interest to us and leading to different values of the energy of its
interaction with the nearest neighbours, but vwill assume that all atoms in
position, of a determined type (01, 02 and P ) have a uniform energy of

interaction with neighbouring atoms, equal to the mean energy for all
positions of the type considered. The use of this approximate method of
course entails a certain degree of inaccuracy in the calculation. Tt may,
however, be considered that the basic qualitative characte:ristic properties
of the influence of order and composition on the diffusion coefficient will
be the more correctly transmitted in such an approximate theory the less the
difference between each other of the energies of interaction of the pairs
CA and CB. Actually, calculations merely taking into account all possible
configurations of atoms adjacent to that considered as taking part in the
diffusion of atoms, and leading to considerably more cumbersome equations
have shown that almost all basic qualitative characteristics of the solution
are maintained also in this more precise theory. Above all, the evaluation
of the error associated with the use of the method tf mean energies was
adopted for the constants selected further in section 4, when, in the interval
of relative concentrations of the alloy A-B, differing fro.. the value
corresponding to the stoichiometric cnmposition by no more than 0.20, the
degree of error was found not to exceed 20% in terms giving the effect of
order of the diffusion coefficient.

The probabilities of substitution for nuclei of the first and second
type of atoms of A and B will be indicated respectively by

P(A) p(2) P( ), and pB2). Then, taking with the reverse sign the mean

potential energy of the atom C from the position 01 equals

u KP()A + P(2 )+ 2(P (2) a + P (2 b) (2)

In a quite similar manner, the potential energy of the atom C taken
with the reverse sign in the position of the second type (02) may be written
in the form:

U0 p(2)A+ p(2) B + 2 MA + P( ) bI (3)
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and~ the position P

(,(1) (2)A D Bpl + p(2)
U.:, A+ AB B0)

We determine thc mean height u 1 2  of the potential arrier for the

tra.nsition of the atom C from 01 to 02 (Figure i). Clearly:

j1 2 -j 0 1 PA

For the transition from 02 to 0 the corresponding va] es will be equal to

U 2  U U (-(2)A+ P(2 )B) + 2(P(1) a+P(1) b)
21 02 ABB

-2 (() + P(2) + (p+ ) + p(2)) (6)

The positive character of the values of u1 2 and u21 should be considered

as limitations imposedeon the possible selection of parameters A, B, a, b,
c andS.

Section 2. Distribution of included atoms C along internodes of the

first and second type.

We shall denote by n the concentration of included atoms (number of

atoms of C in I cm3 ). These atoms have different energy in the internodes

01 and 02. By n and n2 respectively we denote the concentrations of the

atoms C in the internodes 0 and 0 Then:

n U0  - U0 2
fl, 1 2(7)
n2K

2

Utilising the fact than nI + n2 = n and intruducing the designation

.AU U 01 - U0 2 = U1 2 - U2V (8)

we obtain the following expressions for n I and n2



A n

1 +e
(9)

1 K

This same result may be obtained by another method co..sid.ri. rar-4 io r
of atoms C froza tho position 01 to 02 (in tao cuse of grad n = 0 ), and also

from the position 02 to 01 and equating the niumber of transitions of both

types, completed in unit tame, that is from the equilibrium condition (20).

Section 3. Determ-ination of the d-iff\sion coefficient of included atoms

Assume in the alloy the creation of a gradient of concentration of
~~~i x xaxis "=,- t.~t~'*of~~

Consider two neighbouring atomic planes in the alloy L-B, perpendicular to
the x-axis, which will be denoted I and II (Figure 2). The distance betveen
these planes dx a . On these same planes are situated also the atoms C,

2

which are in the internodes. Assuzae that the plane I passes through nodes
of the second type. For one square centimetre of this plane, there vill be
2 12-2 of the internode type 0 and -2 of the type 0 Further, for I cm2 ofa I a 2 hr or1m oo 0

the plane II, which passes through nodes of the first type there are situated

.- 2 positions of the type 0 and 2 positions of the type 0 It is easy to
a 1 -2 2osieasys too a

0
find that the probabilities of substitution of an internode of the type 01
and 02 by the atom C aze equal respectively to

W = n a 3 andW .= n a3  (10)
1 1a6an 23 2 0.

Therefore, on 1cm2 of the plane I (intersecting the x axis at the point x),
will be located

I = 2= x (11)

of atoms C in the internodes of type 01 and

I
02 "3 n 2 

( z) (12)

of atoms C in 4nternodes of the type 02 .

On one cm2 of the plane II (intersecting the x-axis at the point
x + dx) we find

of atoms C in internodes of the type 01 and

11- 2 
(14)0O2 = &0 n2  (x +dx)

of atoms C in internodes of the type 02 . I2
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'e determine the num ber of atoms C ,'hich pass per stcond from I cm of

th plane I onto the plane II. it will be seen frorim Figure 2 --hat the
transitions sho'.vn can be achieved only by atoms C located on the plane I, in
inturnodes of the type 01, when they Yrill pass into internodes of the ty.e

02 (on the plane I). We shall henceforward restrict consideration to the par-

- a'-case when the concentration n of atoms C is ;:-all by compzizo.
a rx..-ber of internodes per I cm . Then, it is possible to ne suect ch rare
events as the presence of t'o atoms in neii ?foourng internodes, one of which
L; situated on the plane I, and the other on tha plane 11.

In this connection thu probability of transition of oie atom C from

the plane I from an internode of the type 01 onto a determined inernode of

the type 02 of the plane II, per unit time, as is krzi-n (2), may be %T.Lt r

in the following form:

u
12 (15)

12 7

.'..e value will be considered to be approximately independent of the
composition and order in the alloy. The atom C considered on the plane I
ma7 pass only into one neighbouring internode on the lane II. The number
of atoms C therefore, passing per unit tine from I m' of the plane I onto
the plane II, equals

u
a 12

W, Wi)2 ) -T 16)SI + I 1 0o 1 2 3

We calculate the flow S, of atoms C. In the precisely similar way,
we obtain

II

= 2SII -+ I = O02  2 1

where the probability of transition of the atom C from an internode of
type 02 onto a determined neighbouring internode of type 01 has the form:

u21

1 e--"T (17)

2 1

aous . n2  (= +d) e (18)
Thus, 2 0 ( -)e k

Noting that n2 (x + dz) - n2 (x) + 
d2 ()x
dx

where dx = a we obtain for the resulting diffusion flow S of atom C the
2

follovring expression:

a u 12
-- - . x)e la

n 2 (x)e - .- dr.(,_ ,,,
- 2GAX



-6-

The first two co-mponents in square brackets of equation (19) r -fcr tc one
and the same value of x. It is therefore possible to consider th:. for t'hc;
case when grad n = 0, and consequently dn 2 = 0. In the .eant' -o, the

diffusion flow S .:ust be equated to zero, which, according to (19) taes
9lace if the following equilibriwa condition is fulfilled

1 12 - 21
n, Wxe ZT = n,2 (x) e la (27t)

It is easy to see that this equation is actually satisfied by the expressions
found above, (9) for n1 and n2. Thus, applying (20) and (9), from (19) -iwe
get:

S D n (2;.)

Here, the diffusion coefficient D of atoms C has the form
a2 u 21 Au
0o - u (22)

D =-2 e k+ kT (22)

which, utilising (8) can be written in the form:

2 u1 2ao - 1*(3

D =-e Au (23)

1 kTI +e

or in the symmetrical form

2

a U 12 u21 (24)

The dependence of the values u12, u2, and 6U on the relative concentration c

of the atom A in the alloy A-B, and on the degree of further order
(1)

PA -o
S (where q = 2c for c 4 . a q I for c > -) may be found
q-C2

with the aid of the known equations (footnote 3) for the probubility of
substitution of nodes of the lattice

A~ B (25)

whee y = q - o.

Apyplying (8) (6) and (25) we find

"*U ,4 * * a

AU - 2u, u12 U + u, u2 1 = u-U,

wheoe u- 2 12[ C#. + (I - C) B] + C.-k + (1 - C)b - 2 [L0. + (1 -CW,

.2- b(26)u, .2 [ 2 (A'- B) a + b I" y ,.
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Then u

D UD e k (27)

ch kT

2
a

SD

JLuions (26) -nc (27) give the relations-ip b~t:.eon the .
co2ficient D of Lho inchlded atoms and the comqosition c::.de ,u u-'
-0,- rt:'r order of the alloy A-B. in the dc erin ~ion of __i ... ature a
conccn-ration relationshin of D in the ordered state of the alloy, it is
nccessary to consider that on the temperature and composition depends also
the degree of further order r,. To evaluate the c}lractur of this relationship,

t Lo u~e tre eCuation of order familiar from statistical theory

I =6e (I -C + yr,) (C + Y) (28)

kT(1 - C - Yr) (C -"r)

where s is the characteristic constant for the given ordered alloy,
associated with energies of interaction v of pairs of neighbouring atoas in
_ -6, -tuloy &-L lj ;.. ... -. . -

L3 oo) - (3 2 ( ) (29)

and vrith the temperature T of the transition order-disorder by the
relationship o

T c - ).()

rro . (28) it is possible in ihe case of evcry value of c to find
graphically the dependence of q (T).

Section 4. Assussment of results.

alysis of the equations obtained le,-ds to the 'folloiring conclusions.

I. Te.,rer7t.-re relationshin of the -'icient

From (27) it follovr th.at for T , wjvhenr=, a'. -. .e

curve for the denderce of loz D or. 7 represents a straih. 1-r.e. The

sa-.e m-e uf deoendence is obtaied in the case of urordere alloys "%-B for
arbitrary temnperatures. Tor ordered alloys, at the Ioint T = T tno -0

-&a~s a brek and at, < ' (w7hen r, * 0) it dous not appear as a

straig.t line. ot:ever, at suffic.nt.y low" tezteratres the relatiornship
bet:.own log D arI aga.n differs littie fror. the 2.incar. On figare 3 aru

s.',. curves illustratinz te tr.-rature rclatinsnip of log D for
t cCznositiorz (fooenote 4) obtained in accordance with (27) and

(26). :n this connection, -6he constants entering into the eCquation were
selected 1r. the follo ir g anner: 2. = -. 255 eV, Z3 = 0. 36 eV,
2a = 0.30 eV, 2b = 0.375 eV, 2 a = 0.375 eV, 2 = 0.45 eV -d C = 0.0352 eV.

.ill be noted that diveriunces fr... the rectiliear reIatior-.hp

.,cen log D and - :-AY ir. accordance ...th (27) be anticizated also I.
7 may in ace

these cases when atc..is of the thi-d includsc ele,.ent C diffuse the
crystalline lattice of rny birary compound, the ato-7S of' w.ini a- %1l
te-peratiure up to the =elting point e complete order. &n t case,



* -8-

however, the divergence from the rectilinear will be obtained only on account

of the pr3senc(; of a multiplier (ch u) - not equal to unity in euator

(27), and not on account of a change in the degre of further urder 'ith
temperature.

The divergcnce indicated, th. ;r r, vrill be uxpres-,)d not so :zarkedly
as in the case considered earlier. It should be stresses that in :rdored
alloys it is not possible to characterise the alloy by a constant not
depending on the temperature of the energies of activation, for dif sion of
atoms C.

2. Connentraticn dependence of the diffusion coefficient

In the unordered state of the alloy, (in the unordered alloys or in the
ordered for T > T)

kT
Dl=De

0

where u! is a linear function of the concentration c of atcms A in the alloy
A-B and the dvn-ndence of D c' - f. .: T = const has a s.mooth character w,-ithout
the presence of any shaxrp extremes near the value c = 0.- V orsoni tt~h prsene o an shrpexteme ner vaue = .) corresponding to

the stoichiometric relationship (see top curve on Figure 4.). in the
ordered state of the alloy A-B, the curves of the 4ependence D(c) in the case
of constant values of T acquire a tendency to have minima at values of c in
the vicinity of c = 0. 5.

Carves of this type constructed in accordance with (27) and (28) in the
case of the values given above for the constants are shovin on Figure 4.
The broken carve on this figure joins points of the curves with abscissae
equal to the composition of the alloys, for which the temperat-ures
corresponding to the curve D(c) are critical temperatures T . The top curve

D
00

(for T = 850°K) gives the relationship D(c) for alloys among Y,'ich already
the alloy of stoichiometric composition is unordered.

It will be seen therefore, tiatt in ordered alloys we should expect
charac:oristic peculiarities of temperature and concentration dcpendence of
the ooefficient of diffusion which do not take place in pure .netals a-4& an

unorN red alloys.

it =ay attain be noted 1hat for autodi.fusicn also, in ordered alloys,
proceeding by way of substitution of gaps on .ne nodes of tne crystai_..ne
lattice similar characteristics should be expected. This is indicated by
calculations (4. and 5) of the equilibrium n,,mber of gaps or, the nodes of both
types In crystalline lattices. In this connection, as was snown in (5) for
the face centred cubic lattice we should expect a spasmodic change of the
diffusion coefficient with the temperature at T = To"

In connection with what has been stated above, it woulId be intere.tting
to perform experimental investigations on diffusion in ordered alloys to
dIsclose by experiment the charaoteristics indicated.
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1. cn:3ideratior , c2 tao -,e,-r eihurswo-'e here give too ccarse-
re'ts. Thrfre o nt, rnodes we shall ocns-:r -,!so the presence

of thd f'ollovring fmX' r-mes iLn extent.

2. 'rnis simplifying ass-uj-.ticn does nct erntai2. apPreriable errcrs, sinoe
we are r'orsidering t.-.e aldloys A-3 represenzinC, 3C.1id SoIltion-S of the
suobstituticn type wiith fairly extensive solub"43ity, formned from atoms

and B witlr. rnear a'omin ai and sirngle type 'fnroe feIds.

3. See for exazple Bib!. 3) equations 31) fcr Vi=1

4. -Here and subsequentiy the curves were conatr-ucted by . .Krivoglaz.

5. J o -,ra 1 c f T e hni.oa1 Pysics, V o . 24., No . 10 .
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